Abstract: | Fuzz testing is a method used in software testing that involves inputting random or unexpected data into a system to identify vulnerabilities. Unlike deterministic methods, which test performance under controlled and predictable conditions, fuzz testing introduces variability to uncover hidden issues. This variability simulates real-world scenarios, uncovering weaknesses that might otherwise remain unnoticed. For instance, fuzz testing can effectively reveal how GNSS receivers respond to rapid signal fluctuations and other anomalous behaviors, situations often overlooked by standard tests. Unlike traditional methods that rely on predefined inputs, Collins Aerospace works on a new fuzz testing framework for GNSS, which employs advanced techniques such as automated input generation and real-time response monitoring. This approach not only facilitates a comprehensive assessment of receiver resilience but also allows for the dynamic adaptation of test scenarios in real-time, ensuring that a wide range of operational conditions is explored. The navigation equipment minimum testing procedures must be defined and need scenarios definitions as well as test steps and pass/fail criteria to provide minimum guidance to manufacturers for future equipment certification. The limitations of current testing methods further highlight the necessity of adopting fuzz testing. These methods predominantly rely on deterministic approaches, which do not effectively simulate the unpredictable nature of real-world signal degradation or complex interference scenarios posed by advanced spoofing techniques. As technology advances, the techniques utilized by malevolent actors likewise evolve, emphasizing the necessity for adaptive testing methodologies capable of responding to these changes. By introducing randomness and variability, fuzz testing plays a critical role in bolstering the reliability and operational integrity of GNSS systems by rigorously assessing their ability to withstand both known and unknown threats. The anticipated results from this fuzz testing framework are expected to identify vulnerabilities and enhance the resilience of GNSS receivers, suggesting that fuzz testing can play a transformative role in GNSS validation. |
Published in: |
Proceedings of the 2025 International Technical Meeting of The Institute of Navigation January 27 - 30, 2025 Hyatt Regency Long Beach Long Beach, California |
Pages: | 290 - 304 |
Cite this article: | Haag, Nina, Ouzeau, Christophe, Fejri, Lotfi, Bartolone, Patrick, Blais, Antoin, Prun, Daniel, "Investigation on New Fuzzing Techniques to Address Navigation System Testing," Proceedings of the 2025 International Technical Meeting of The Institute of Navigation, Long Beach, California, January 2025, pp. 290-304. https://doi.org/10.33012/2025.19978 |
Full Paper: |
ION Members/Non-Members: 1 Download Credit
Sign In |