Abstract: | This paper proposes a new method for RTK post-processing. Different from the traditional forward-backward Kalman filter, in our method, the whole system equation is built on a graphical state space model and solved by factor graph optimization. The position solution provided by the forward Kalman filter is used as the linearization points of the graphical state space model. Constant variables, such as double-difference ambiguity, will exist as constants in the graphical state space model, not as time-series variables. It is shown by experiment results that factor graph optimization with a graphical state space model is more effective than Kalman filter with a traditional discrete-time state space model for RTK post-processing problem. |
Published in: |
Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022) September 19 - 23, 2022 Hyatt Regency Denver Denver, Colorado |
Pages: | 2767 - 2776 |
Cite this article: | Ge, Yihong, Yan, Sudan, Lü, Shaolin, Li, Cong, "Global RTK Positioning in Graphical State Space," Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, Colorado, September 2022, pp. 2767-2776. https://doi.org/10.33012/2022.18519 |
Full Paper: |
ION Members/Non-Members: 1 Download Credit
Sign In |