A New Approach of GNSS Multipath Detection using the Guard time of Satellite based on C/N0

Nobuaki Kubo, Kaito Kobayashi, Tomohiro Ozeki

Peer Reviewed

Abstract: The reduction of multipath errors is a significant challenge in the Global Navigation Satellite System (GNSS), especially when receiving non-line-of-sight (NLOS) signals. However, selecting line-of-sight (LOS) satellites correctly is still a difficult task in dense urban areas, even with the latest GNSS receivers. This study demonstrates a new method of utilization of C/N0 of the GNSS to detect NLOS signals. The elevation-dependent threshold of the C/N0 setting may be effective in mitigating multipath errors. However, the C/N0 fluctuation affected by NLOS signals is quite large. If the C/N0 is over the threshold, the satellite is used for positioning even if it is still affected by the NLOS signal, which causes the positioning error to jump easily. To overcome this issue, we focused on the value of continuous time-series C/N0 for a certain period. If the C/N0 of the satellite was less than the determined threshold, the satellite was not used for positioning for a certain period, even if the C/N0 recovered over the threshold. Two static tests were conducted at challenging locations near high-rise buildings in Tokyo. The results proved that our method could substantially mitigate multipath errors in differential GNSS by appropriately removing the NLOS signals. Therefore, the performance of real-time kinematic GNSS was significantly improved. This new approach was also tested using the raw data of the car when it stopped for traffic signals at similar locations in the above test. During those stopping for traffic signals, both differential GNSS and RTK-GNSS were improved a lot.
Published in: Proceedings of the 2022 International Technical Meeting of The Institute of Navigation
January 25 - 27, 2022
Hyatt Regency Long Beach
Long Beach, California
Pages: 932 - 946
Cite this article: Kubo, Nobuaki, Kobayashi, Kaito, Ozeki, Tomohiro, "A New Approach of GNSS Multipath Detection using the Guard time of Satellite based on C/N0," Proceedings of the 2022 International Technical Meeting of The Institute of Navigation, Long Beach, California, January 2022, pp. 932-946. https://doi.org/10.33012/2022.18232
Full Paper: ION Members/Non-Members: 1 Download Credit
Sign In