Measuring the Temperature Dependence of Collision Shifts for Optical Transitions

Hunter Kettering, Travis Driskell, James C. Camparo

Abstract: It is well known that collision shifts (i.e., buffer-gas shifts) for microwave transitions in atomic clocks have a non-negligible temperature dependence. What is perhaps not so well known is that the same holds true for optical transitions. In particular, for collision shifts deriving from a C6 interatomic potential the buffergas collision shift scales like dn = dno (T/To ) k , where dno is the collision shift at the reference temperature To, and k is a parameter describing the collision shift’s temperature sensitivity. For the heavier noble gases and the alkali first-resonance lines, k is theoretically expected to equal 0.3; and this has recently been confirmed experimentally in our laboratory. Here, we describe progress in our experiments to measure k for the alkali first-resonance lines perturbed by the full family of noble-gases, where deviations from k = 0.3 are anticipated for the lighter noble-gases.
Published in: Proceedings of the 52nd Annual Precise Time and Time Interval Systems and Applications Meeting
January 25 - 28, 2021
Pages: 313 - 325
Cite this article: Kettering, Hunter, Driskell, Travis, Camparo, James C., "Measuring the Temperature Dependence of Collision Shifts for Optical Transitions," Proceedings of the 52nd Annual Precise Time and Time Interval Systems and Applications Meeting, January 2021, pp. 313-325. https://doi.org/10.33012/2021.17792
Presentation Slides: ION Members/Non-Members: 1 Download Credit
Sign In