Integrity-Based Path Planning Strategy for Urban Autonomous Vehicular Navigation Using GPS and Cellular Signals

Halim Lee, Jiwon Seo, and Zaher M. Kassas

Peer Reviewed

Abstract: An integrity-based path planning strategy for autonomous ground vehicle (AGV) navigation in urban environments is developed. The vehicle is assumed to navigate by utilizing cellular long-term evolution (LTE) signals in addition to Global Positioning System (GPS) signals. Given a desired destination, an optimal path is calculated, which minimizes a cost function that considers both the horizontal protection level (HPL) and travel distance. The constraints are that (i) the ratio of nodes with faulty signals to the total nodes be lower than a maximum allowable ratio and (ii) the HPLs along each candidate path be lower than the horizontal alert limit (HAL). To predict the faults and HPL before the vehicle is driven, GPS and LTE pseudoranges along the candidate paths are generated utilizing a commercial ray-tracing software and three-dimensional (3D) terrain and building maps. Simulated pseudoranges inform the path planning algorithm about potential biases due to reflections from buildings in urban environments. Simulation results are presented showing that the optimal path produced by the proposed path planning strategy has the minimum average HPL among the candidate paths.
Published in: Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020)
September 21 - 25, 2020
Pages: 2347 - 2357
Cite this article: Lee, Halim, Seo, Jiwon, Kassas, Zaher M., "Integrity-Based Path Planning Strategy for Urban Autonomous Vehicular Navigation Using GPS and Cellular Signals," Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), , September 2020, pp. 2347-2357.
https://doi.org/10.33012/2020.17589
Full Paper: ION Members/Non-Members: 1 Download Credit
Sign In