Distributed Cavity Phase and the Associated Power Dependence

Ruoxin Li, Kurt Gibble

Abstract: We discuss the power dependence of distributed cavity phase errors for cylindrical TE011 cavities in laser-cooled atomic fountain clocks. The azimuthally symmetric phase variations produce a surprisingly large distributed cavity phase error for two 2p, 4p, and 6p pulses. This is due to the correlation between the transverse variation of the Rabi frequency over the cavity aperture and a quadratic density variation of the atomic sample, along with the symmetry of the longitudinal phase variation in the cavity. We show that the large azimuthally symmetric fields and phase shifts near the walls of the endcap holes produce very small errors at optimal power for a uniform wall resistance. We also show the power variation for higher order azimuthal variations m=1, 2, and 4. These may be caused by fountain tilts, non-uniform detection of atoms, and asymmetries in the laser trapping and cooling of the atoms. We demonstrate that distributed cavity phase errors in physical cavities may have no variation with the microwave power. A combination of rigorous calculations of cavity losses, measurements of power dependence, the atomic distributions, and fountain tilts, and electrical measurements that show the lower limit of the cavity Q and the cavity symmetry, should provide stringent limits on distributed cavity phase errors for current atomic clocks.
Published in: Proceedings of the 37th Annual Precise Time and Time Interval Systems and Applications Meeting
August 29 - 31, 2005
Vancouver, Canada
Pages: 99 - 104
Cite this article: Li, Ruoxin, Gibble, Kurt, "Distributed Cavity Phase and the Associated Power Dependence," Proceedings of the 37th Annual Precise Time and Time Interval Systems and Applications Meeting, Vancouver, Canada, August 2005, pp. 99-104.
Full Paper: ION Members/Non-Members: 1 Download Credit
Sign In