Performance Analysis of MADOCA-Enhanced Tightly Coupled PPP/IMU

Cheng-Wei Wang and Shau-Shiun Jan

Peer Reviewed

Abstract: Precise point positioning (PPP), which is characterized by reliable positioning accuracy and flexibility, has been regarded as a highly promising technique. Precise ephemeris is essential for PPP; however, the conventionally used standard product 3 components have an almost biweekly latency. The multi-global navigation satellite system (GNSS) advanced demonstration tool for orbit and clock analysis (MADOCA), a novel next-generation service, aims to provide real-time correction messages for rapid-convergence PPP in regional areas. Additionally, to ensure seamless navigation during signal-interrupted conditions, an inertial measurement unit (IMU) can be tightly integrated with the motion constraint models. This paper presents a comprehensive analysis of standalone MADOCA-PPP and MADOCA-enhanced tightly coupled PPP/IMU. The approaches were evaluated under multiple scenarios. In suburban regions, the horizontal root mean square error (RMSE) was 0.4 m, with a 95th percentile horizontal error of 0.6 m. In GNSS-challenging environments, the horizontal RMSE was 0.92 m, with a 95th percentile horizontal error of 1.6 m.
Video Abstract: