Results on GNSS Spoofing Mitigation Using Multiple Receivers

Niklas Stenberg, Erik Axell, Jouni Rantakokko, and Gustaf Hendeby

Peer Reviewed

Abstract: GNSS receivers are vulnerable to spoofing attacks in which false satellite signals deceive receivers to compute false position and/or time estimates. This work derives and evaluates algorithms that perform spoofing mitigation by utilizing double differences of pseudorange or carrier phase measurements from multiple receivers. The algorithms identify pseudorange and carrier-phase measurements originating from spoofing signals, and omit these from the position and time computation. The algorithms are evaluated with simulated and live-sky meaconing attacks. The simulated spoofing attacks show that mitigation using pseudoranges is possible in these tests when the receivers are separated by five meters or more. At 20 meters, the pseudorange algorithm correctly authenticates six out of seven pseudoranges within 30 seconds in the same simulator tests. Using carrier phase allows mitigation with shorter distances between receivers, but requires better time synchronization between the receivers. Evaluations with live-sky meaconing attacks show the validity of the proposed mitigation algorithms.
Video Abstract:
Published in: NAVIGATION: Journal of the Institute of Navigation, Volume 69, Number 1
Cite this article: Citation Tools
Full Paper: ION Members: Free Download
Non-Members: Free Download
Sign In