MagSLAM: Aerial simultaneous localization and mapping using Earth's magnetic anomaly field

Taylor N. Lee and Aaron J. Canciani

Peer Reviewed

Abstract: Instances of spoofing and jamming of global navigation satellite systems (GNSSs) have emphasized the need for alternative navigation methods. Aerial navigation by magnetic map matching has been demonstrated as a viable GNSS-alternative navigation technique. Flight test demonstrations have achieved accuracies of tens of meters over hour-long flights, but these flights required accurate magnetic maps which are not always available.Magneticmap availability and resolution vary widely around the globe. Removing the dependency on prior survey maps extends the benefits of aerial magnetic navigation methods to small unmanned aerial systems (sUAS) at lower altitudes where magnetic maps are especially undersampled or unavailable. In this paper, a simultaneous localization andmapping (SLAM) algorithm known as FastSLAM was modified to use scalar magnetic measurements to constrain a drifting inertial navigation system (INS). The algorithm was then demonstrated on real magnetic navigation flight test data. Similar in performance to the map-based approach, MagSLAM achieved tens of meters accuracy in a 100-minute flight without the use of a prior magnetic map. Aerial SLAM using Earth's magnetic anomaly field provides a GNSS-alternative navigation method that is globally persistent, impervious to jamming or spoofing, stealthy, and locally accurate to tens of meters without the need for a magnetic map.
Published in: NAVIGATION, Journal of the Institute of Navigation, Volume 67, Number 1
Pages: 95 - 107
Cite this article: Export Citation
Full Paper: ION Members: Free Download
Non-Members: Free Download
Sign In