Previous Abstract Return to Session B5 Next Abstract

Session B5: Atmospheric Effects

Effects of the Ionosphere Dispersion on Wideband GNSS Signals
Zhao Danning and Lei Yu, National Time Service Center, Chinese Academy of Science, China
Location: Cypress

Wideband GNSS signals suffer signal distortions such as waveform deformations and correlation peak reduction when traverse the ionosphere. Basing on the standard model of the ionosphere, we first demonstrate a modified ionosphere model to capture the ionosphere dispersion effects on wideband signals. We decompose the first-order ionosphere model into Taylor series. By using the first three terms of Taylor series, it is possible to account for all frequency components of wideband signals rather than treating them as single tone. We then make an analysis of the ionosphere dispersion effects on wideband GNSS signal tracking. It is revealed that the ionosphere dispersion degrades correlation peak results and shifts carrier-phase in the PLL output but dose not cause an additional delay for code measurements. Furthermore, we carry out a simulation for evaluating the ionosphere dispersion effects on tracking of various new generation wideband GNSS signals such as Galileo E5 AltBOC(15, 10) signals and BDS B3 BOC(15, 2.5) signals during ionosphere quietness and activities. The results show that the wider the bandwidth and the greater the total electron content (TEC) values, the more dramatic the ionosphere effects are. The Galileo E5 AltBOC(15, 10) signals are most affected among various wideband GNSS signals. For AltBOC(15, 10) signal tracking the correlation power loss is around 0.1 dB and the carrier-phase change is about 20 degrees caused by the dispersion in quiet ionosphere case, and increases up to 0.35 dB and 33 degrees during ionosphere activities, respectively.



Previous Abstract Return to Session B5 Next Abstract