Previous Abstract Return to Session A4 Next Abstract

Session A4: GNSS in Challenging Environments 2

Ionosphere Scintillation Effects on GPS Measurements, a New Carrier-Smoothing Technique, and Positioning Algorithms to Improve Accuracy
Gregory T. Myer, Colorado State University and Yu T. (Jade) Morton, University of Colorado Boulder
Location: Grand Ballroom G
Date/Time: Thursday, Feb. 1, 9:35 a.m.

Peer Reviewed

The ionosphere is an important cause of disturbances on GNSS signals, especially in high latitudes and equatorial areas. Previous studies indicate that while ionospheric scintillation may cause abrupt, random fluctuations in carrier phase measurements, its impact on pseudorange is less serious. Since modern GNSS receivers, especially those for high precision applications, use carrier phase-smoothed pseudoranges to improve accuracy of position solutions, there exists the need to have a better understanding of the scintillation effects on carrier phase measurements and developing means to mitigate scintillation induced errors in navigation solutions.
In this paper, scintillation impacts are demonstrated on carrier phase and pseudorange measurements using real scintillation data collected at high latitudes and equatorial areas, and the effect on positioning is investigated and mitigated. To obtain a more insightful and quantitative understanding of the impact, the data was used to generate position solutions using standard navigation processing algorithms. The results clearly indicate that sudden carrier phase discontinuities during strong scintillation lead to the degradation of carrier-smoothed pseudorange accuracy and consequently, results in large position errors. During strong scintillation with no carrier phase discontinuities, comparatively smaller position errors are found due to phase fluctuations that cause small changes in the range measurements.
Based on this analysis, we give examples of several approaches to mitigate these problems, and use these approaches to present adaptive positioning techniques to mitigate scintillation induced position errors. One algorithm simply replaces the carrier-smoothed pseudorange with the unsmoothed pseudorange for satellites that are affected by outages on the carrier phase measurements, or if strong scintillation is detected. Another adaptive algorithm uses the GDOP to determine if a scintillating satellite can be completely removed from the navigation processing to improve positioning accuracy.
Results show that the algorithms that substitute the unsmoothed pseudorange increase errors by 24.5% as compared to a conventional technique, which indicates that it is still best to use the carrier-smoothed pseudoranges as long as there are no carrier phase discontinuities. Results from the adaptive technique based on the analysis of the GDOP show a reduction of maximum errors on average by 13% on 18 scintillation data sets when comparing to a conventional algorithm. It was also found that a new carrier-smoothing technique reduced maximum errors by 7.9% on average. Alternative approaches for future improvements are also discussed.



Previous Abstract Return to Session A4 Next Abstract