A. Althaf, and Hari Hablani, Discipline of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, India

View Abstract Sign in for premium content


Our objective is to assess the PVT accuracy of a stationary receiver using NavIC and explore ways to improve it using single and dual-frequency observables. We also propose a method to extend Breivik et al. approach of estimating multipath error using signal to noise ratio. Position accuracy using smoothed single-frequency pseudoranges is within 5 m, 3D residual-sum-of-squares (RSS), for the 22-hour duration with PDOP varying between 3-3.2. Further improvement in precision is shown by compensating multipath using sidereal repeatability but this process introduces a bias in the estimates. Velocity estimation accuracy using carrier phase measurements has 3D RSS mean and 1-sigma of 5.2 mm/s and 3.18 cm/s, respectively, which is better than the Doppler-derived estimates mean of 82.9 mm/s and 4.51 cm/s (1-sigma). We show better accuracy for both the position and velocity estimates as compared to the receiver’s estimates.