Large-Scale GNSS Spreading Code Optimization
Alan Yang, Tara Mina, Stephen Boyd, and Grace Gao, Stanford University
Date/Time: Friday, Sep. 20, 11:03 a.m.
We propose a bit-flip descent method for optimizing binary spreading codes with large family sizes and long lengths, addressing the challenges of large-scale code design in GNSS and emerging PNT applications. The method iteratively flips code bits to improve the codes’ auto- and cross-correlation properties. In our proposed method, bits are selected by sampling a small set of candidate bits and choosing the one that offers the best improvement in performance. The method leverages the fact that incremental impact of a bit flip on the auto- and cross-correlation may be efficiently computed without recalculating the entire function. We apply this method to two code design problems modeled after the GPS L1 C/A and Galileo E1 codes, demonstrating rapid convergence to low-correlation codes. The proposed approach offers a powerful tool for developing spreading codes that meet the demanding requirements of modern and future satellite navigation systems.
For Attendees Call for Abstracts Registration Hotel Travel and Visas Exhibits Submit Kepler Nomination For Authors and Chairs Abstract Management Student Paper Awards Editorial Review Policies Publication Ethics Policies For Exhibitors Exhibitor Resource Center Marketing Resources Other Years Future Meetings Past Meetings