Title: A Real-time World-wide Ionospheric Model for Single and Multi-frequency Precise Navigation
Author(s): A. Rovira-Garcia, J. M. Juan, J. Sanz
Published in: Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2014)
September 8 - 12, 2014
Tampa Convention Center
Tampa, Florida
Pages: 2533 - 2543
Cite this article: Rovira-Garcia, A., Juan, J. M., Sanz, J., "A Real-time World-wide Ionospheric Model for Single and Multi-frequency Precise Navigation," Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, Florida, September 2014, pp. 2533-2543.
Full Paper: ION Members/Non-Members: 1 Download Credit
Sign In
Abstract: The ionosphere plays an important role in satellite-based navigation, either in standard navigation, with single frequency mass-market receivers, or in precise navigation, with dual frequency receivers. In this work, the requirements of a real-time ionospheric model suitable for GNSS applications are explored, in terms of accuracy and confidence bounds. Key factors for an ionospheric determination better than 1 Total Electron Content Unit (TECU) (16 centimeters in L1) are shown to be whether the model has been derived using an ambiguity-fixing strategy and the number of layers used to reproduce the ionospheric delay. Different models are assessed both in mid-latitudes and equatorial regions, near the Solar Cycle maximum. It will be shown how dual-frequency users take benefit from a precise modelling of the ionosphere. If accurate enough, the convergence of the navigation filter is reduced to achieve high accuracy positioning quickly, (i.e., the Fast Precise Point Positioning technique). Satellite orbits and clocks computed for Fast-PPP will be shown to be accurate to few centimeters and few tenths of nanoseconds, respectively. Single-frequency users correct its measurements with the predictions provided by any ionospheric model. Thence, the accuracy of the Fast-PPP ionospheric corrections is directly translated to the measurements modelling and, consequently, to the user solution. Horizontal and vertical 95% accuracies are shown to be better than 36 and 63 centimeters for single-frequency users and 11 and 15 centimeters for dual-frequency users. The assessment is done for several locations, including the equatorial region, for a month of data close to the last Solar Maximum. The trade-off between the formal and actual positioning errors has been carefully studied by means of the Stanford plots to set realistic confidence bounds to the corrections.